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In the last decades, with the advent of the modern synchrotron radiation facilities, the possibility of using either
neutrons or x-ray to study atomic level characteristics of condensed matter became an important aspect of this area of
research. The knowledge of the relative merits of these two powerful tools for the analysis of condensed matter is an
important step for those wishing to get the best possible information about either structure or dynamics at the atomic
level.

Given the extremely widespread of applications of both techniques even in the limited common areas of applications
does not allow for a complete description of all the possibilities open by the two techniques. In this lecture a brief basic
comparison is given starting from the well known low order scattering processes, trying to give some idea about the
range of applications where the two techniques provide similar or complementar information and the situations where
one technique is better than the other, focusing on diffraction experiments and inelastic scattering experiment in the
meV energy range.

In the following pages the lectures taken from the Proceedings of the International School of Physics "E. Fermi”,
Course CXIV - edited by M. Fontana and F. Rustichelli (1990), Industrial and technological applications of neutrons,
are first reported.
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1. — Introductory remarks.

The use of neutron seattering in studying condensed-matter phenomena is
well established and often this technique is routinely employed. However, the
potentiality of this technique in applicative fields is reduced by the fact that
small laboratory-scale sources are not useful as in the case of X-ray sources, for
instance. Furthermore, due to intrinsic intensity limits of even large-scale
sources, the general performance of a neutron diffraction facility does not com-
pare favourably with an X-ray facility. Finally also the problems connected to
the very high cost of neutron scattering facilities have a relevant weight.

Although the serious limits mentioned above have a large impact in the use
of neutron scattering in applicative fields, the intrinsic advantages of the neu-
tron as a condensed-matter probe make its use extremely appealing, especially
when it is used to give a final answer to a well-defined question.

To identify the various advantages of neutron scattering we recall the most
important characteristics of the neutron-atom interaction. The neutron inter-
acts with an atom mainly through the so-called strong nuclear interaction with
the nucleus and through the magnetic interaction between its intrinsic magnet-
ic dipole (see table I) and the magnetic dipole of the atom, if any.

TABLE [. — Properties of the neutron.

neutron mass M=1673-10 % g

neutron magnetic moment veh/2Mc = —1.913-0.509-10"% erg/Oe
neutron kinetic energy E = n*K?%/2M, E(meV)=2.0721K2(A~1) = 81.803/2% (A)

Larmor frequency v, = 2veh/2Mc, v (Hz) = 92.34-10° H(T)
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The first interaction is a very-short-range one as it extends only over the nu-
clear radius, namely a radius of the order of 107'* em or less. Though the intrin-
sie nature of the neutron-nucleus interaction is much less known than the elec-
tromagnetic interaction between the X-ray and the atom, we shall see that, in
practice, the neutron-nucleus interaction is much simpler. The first important
point to be considered is the fact that even the strong nuclear interaction, due
to the very small range over which it extends, gives rise to a relatively weak in-
teraction, so that the mean free path of a neutron in condensed matter is gener-
ally of the order of centimetres. Moreover the coupling of the neutron with the
nucleus makes the interaction completely independent of the chemical environ-
ment, thus allowing the use of the neutron in studying the structural effects in-
dependently of the chemical bonds. Finally we mention that there is no special
trend along the periodic table, so that the neutron diffraction can be used to dis-
tinguish even contiguous elements. This fact makes the neutron scattering al-
most unique in studying order-disorder processes, for instance, in alloys.

Because of all the above advantages the use of neutron scattering has be-
come very important in several fields of condensed-matter research to get
unique and well-defined answers.

In the following sections the basic features of neutron scattering will be pre-
sented, avoiding the use of a quantum-mechanical treatment. This simplified
approach is completely equivalent to the quantum-mechanical one, at least to
the lowest nonvanishing order.

1'1. Qualitative behaviour of neutron-nucleus interaction. — The detailed
analysis of the nuclear interaction in condensed matter has been presented in
several textbooks[1], however we shall present a simplified description of the
interaction, in a form suitable to perform a close comparison with the compan-
ion X-ray scattering.

Of course, to allow for the description of diffraction phenomena involving
particles, as is the case of the neutron, we have to attribute to the particle an
appropriate wavelength (de Broglie wavelength), which is given by (see
table 1)

(1.1) A=

where p = mu is the impulse of the particle, m being its mass, v the velocity and
h the Planck constant. In this way we can describe the interaction between the
neutron and a single nucleus as the interaction between an incoming wave of
given wavelength and a properly chosen matter density ¢x (r) which interacts
with the wave. If we consider the wave scattered in a given direction as de-
scribed in fig. 1, we can assume that its amplitude is proportional to the matter
density in each volume element dr. Of course, all the contributions produced by
different volume elements must be summed including the various phase differ-



K

Fig. 1. — Scattering geometry in real space, K, incoming-neutron wave vector, K, outgo-
ing-neutron wave vector, dQ solid angle, dr volume element.

ences. Then we have
(1.2) 0= A [ expliKy-rlexp[—iK-rloy (r— Ry)dr,

where the integral extends over the volume where ¢y (r) is nonzero, R, is the po-
sition of the nucleus, A is a constant dependent on the nature of the interaction
between neutron and nucleus, K, and K are the wave vectors of the waves cor-
responding to the incoming and outgoing neutron, respectively. Of course, we
have

(1.3) K(]:K=_,

as is the case for elastic scattering. The description we have employed in fact
refers to elastic scattering because the nucleus is tacitly assumed to be infinite-
ly massive, i.e. it is held in a fixed position. Looking at eq. (1.3) we see that,
when we use a wavelength of the order of 1 A = 10™® em, which is typical in con-
densed-matter studies, the typical value of K-r is such that

(1.4) K-rl<Kr<107?

because the nuclear radius is less than 10 '* ¢m. Therefore, with an approxima-
tion which is as good to at least 0.1%, we can assume

(1.5) ¢ = const-exp|—iQ-Ry],
where @ is the wave vector transfer:
(1.6) Q =K KO .

The constant appearing in eq. (1.5) depends on the nucleus and on the nature of
the interaction. The flux of neutrons scattered into the direction defined by the



wave vector K is proportional to the square modulus of the wave ampli-
tude -

(1.7) 4 = B|Y|* = const .

Therefore, the scattering from a single nucleus is completely isotropic and de-
fined by a single constant dependent on the specific nucleus only.

When more than one nucleus is present, the amplitude ¢ is the sum of the
contributions of the various nuclei at sites R,. We get

(1.8) ¢ = const - ; exp [1QR,;],

so that the flux of scattered neutrons is given by

(1.9) ¢ = B|¢|* = const - % ;AEAI- exp[iQR,— R,

where A, and A, are properly chosen constants that describe the scattering pro-
cess from a single nucleus.

All the above relationships contain multiplicative constants due to the fact
that the flux of scattered neutrons depends on the intensity of the incoming
beam. Therefore, it is usual to introduce a quantity called scattering cross-sec-
tion, which depends on the scattering process and is independent of the incom-
ing-beam intensity. We give a general definition of cross-section as follows:
given an incoming-beam intensity j, (neutron per unit surface and unit time) of
neutrons having energy E, the flux d¢ (number of neutrons per unit time) of
neutrons scattered within the solid angle dQ and having energy K =F —¢
within the energy interval de is proportional to j,:

(1.10) d¢ = const - j,dQ de;

the constant depends on the sample and on the nature of the interaction and is
called differential scattering cross-section. Usually it is written in the form

2
(1.10a) dg = d%o

= dﬂdsjo dQde;

when we consider the purely elastic scattering, i.e. £ = E;, we write

do .
.

(1.10b) dé =

According to eq. (1.7) the cross-section for the scattering from a single nucleus
can be written as follows:

ﬁ: = 2
(1.7a) D const = |b|*,

where b is a constant called scattering amplitude. When many nuclei are



present, we have

ds _

(1.9a) 10

; b, by exp[IQR, — R,)].

1'2. Coherent and incoherent scattering. — It 1s useful for many purposes to
modify eq. (1.9a) to extract the effect of the scattering amplitude fluctuations.
In fact the scattering amplitude b; fluctuates in real samples due to many rea-
sons: b, depends on the isotope distribution and fluctuates on a given nucleus
due to the nuclear spin. Therefore, it is useful to split b; as follows:

(1.11) b;=b+dg,

where b is the average value of b, and 4, is a fluctuation. If we consider, for in-
stance, a sample containing a single element having many isotopes, we
have

(1.12) (4, =0 and (4,4, )= {4},

where (...) indicates the average over the isotope distribution. The second rela-
tion is due to the fact that the occupancy of the site [ is completely independent
of the occupancy of the site I'. Using eq. (1.12) we can write eq. (1.9a) in the fol-
lowing form:

(1.13) &~ o3, exp[iQUR, — Ru)]+ N(at)

where the first term depends on the nuclear positions and gives rise through
the interference of different waves to diffraction effects, while the second term
is constant and depends on the nature of the sample. The first contribution is
generally called coherent-scattering cross-section, while the second one is re-
ferred to as incoherent-scattering cross-section. Actually the information con-
tained into the incoherent-scattering cross-section is apparently limited, how-
ever it is evident that eq. (1.13) relies strongly on eq. (1.12) which is valid only
in the case of no correlation between 4; and 4, at two different sites. A case
where eq. (1.12) is no longer valid is that of a substitutional binary alloy. In this
case the alloy sites are occupied more or less randomly by two atoms A and B.
Therefore, if b, and by are the scattering amplitudes relative to A and B atoms,
we have

(1.14) b= .’»UbA + be s
while

_ [y(bs—bp) if A is present at the site R;,

1.15 i =
( ) : x(bg —by) if B is present at the site R, ,

where ¥ =1 —y is the concentration of the A atom. If no short-range order is



present, we have
- (1.16) (4,4, ) =xylby—bg)ey

so that eq. (1.13) again holds. On the other hand, if some short-range order is
present as is almost always the case, (4,4, ) is a decaying function of R, — R,
and the incoherent scattering is no longer isotropic. Therefore, the study of this
contribution can be useful in analysing the short-range correlations in al-
loys.

2. — Magnetic scattering of neutrons.

2'1. Magnetic interaction. — Due to the fact that a neutron brings a magnetic
moment y = — 1.913 nuclear magnetons uy (1xx = eh/2Mc, M being the unit nu-
clear mass), there is a dipole-dipole interaction when the neutron impinges a
system containing magnetic moments. Actually there is the case of paramagne-
tic substances as well as systems where a magnetic alighment exists, e.g.
ferromagnets.

A detailed treatment of the magnetic interaction is somewhat complex and
the readers are referred to the standard textbook of Lovesey[l], for in-
stance.

A simple description can be obtained using the same approach followed in
the case of nuclear scattering. As in that case we can introduce a density fune-
tion m(r) which represents the magnetic-interaction density, so that the neu-
tron wave amplitude ¢ is given by

(2.1) ¢ = A]exp [1Ky-rlexp[—iK-rlm() dr.

However, because the magnetic interaction is produced by the electrons
present in the matter, eq. (1.4) does not hold and the magnetic scattering is not
isotropic. Therefore, the flux of scattered neutrons can be written in the follow-
ing form:

(2.2) ¢ = Blfn (@),

where f, (@) is a magnetic form factor which is the Fourier transform of
m(r).

The actual shape of »u(r) and hence the form factor f,, (@) can be calculated if
the electron states are known and tabulations are available for the most signifi-
cant atoms and ions.

Due to the vector nature of the neutron-electron interaction the factor B in
eq. (2.2) is dependent on the direction of the momentum transfer @, while the
form factor is in general a vector and depends on the direction of the magnetic-
moment distribution which is a vector density and not a scalar density. The



magnetic cross-section can be written in the form

(2.3)

51; :(%}_) QRX[QXF (@],

where the magnetic form factor is given by

(2.4) (@ = | m(r)exp[iQr] dr
and r, = e?/mc*® is the classical electron radius. Because we have

(2.5) fin 1 (@) = QX[QXF (@] =firn(Q{f (@) —[Qfr (@IQ),

we can state that the quantity determined using the magnetic neutron scatter-
ing 1s the transversal (with respect to the momentum transfer @) component of
the magnetic-moment distribution. Therefore, for instance, if the neutron scat-
tering is studied in a ferromagnet applying the magnetic field along a direction
perpendicular to @, we get a magnetic cross-section proportional to f,, (@), while
the cross-section is zero if the magnetic field is parallel to Q.

The magnetic neutron scattering is particularly interesting if we consider
the case of a polarized incoming neutron beam. If p is a vector describing the po-
larization, then the total (nuclear and magnetic) cross-section is given by

d’; 22 bgbl*+ 7'0}’ _2p'f](1i)J_(Q)bgf+

2
(&.6) dQ T 2

77\ ‘ .
o5 @12 @[ espliom - o),
where a new mixed term is present which represents an interference effect be-
tween nuclear and magnetic scattering. Such a term is clearly absent when
p =10 and can be used to have a safe distinction between nuclear and magnetic
contributions.

2'2. Comparison between neutron and X-ray scattering. — The presence of a
finite range of the magnetic-moment density makes the behaviour of the mag-
netic neutron scattering very similar to that of X-ray charge (Thomson) scatter-
ing. In fact, as in the case of X-rays the magnetic neutron scattering is not
isotropic, however an important qualitative difference is present. In the case of
X-rays the form factor is governed by the total electron density, so that it is not
strongly affected by the chemical bonds possibly present in various substances.
In the case of neutrons, on the other hand, the magnetic density m(r) is general-
ly produced by the valence electrons, the same electrons involved in the bonds,
so that the form factor of a given element can change appreciably in changing
the chemical environment. This behaviour can be used to extract information on



the chemical bonds as well as on the magnetic properties of various systems,
however the magnetic neutron scattering is not generally useful to derive accu-
rate structural data, apart from the utility in identifying the magnetic
structures.

3. — Diffraction in crystals and disordered systems.

In subsect. 1°'1 we described the general behaviour of the neutron cross-sec-
tion. However, as in the case of X-ray diffraction, the actual intensity pattern
obtained in an experiment depends even qualitatively on the nature of the
sample being investigated. We can distinguish two general cases, namely crys-
tals and disordered systems like amorphous and liquid materials.

In the case of crystals the nuclear positions belong to a (three-dimensional)
traslation group, i.e. each position vector is the sum of a vector position of a unit
cell and a vector position within the unit cell:

(3.1) R,=R,+r,,

where [ runs over the N cells in the crystal and s runs over the » nuclei present
in the unit cell. Of course, R, generates a Bravais lattice because it can be writ-
ten as

(3.2) R, =na, +ma+ka;,

where n;, m; and k; are integers and a,, @, and a; are three vectors defining the
translation group. Therefore, in a crystal it is convenient to define

(33) Bs = (bfs ) and J‘Is = bés - ES ’
where (...) indicates the average over all the cells in the crystal but holding
fixed the site s within the cell. Then, using eq. (1.9a), we get

d= 2
3.4 = :
8:2) dQ

> Db, + A,) exp liQR, + 1))

! 8

Thanks to the fact that (4,,) = 0, we can split the cross-section into two contri-
butions as in eq. (1.13). We get

& _

| =2
@5 0

2, b, exp [1Qr,] 2 exp [1QR,;] ‘ ? +

+N 2, 2, 2 (Ao dier ) exp[iQQr, — 1) exp [iQR,].

Because of the lattice periodicity we have

. . . N if @ is a reciprocal-lattice vector,
(3.6) Y expliQR;] = { N ,

0 otherwise .



This relationship can be written in a compact form as follows:

(2r)®
o 2°Q-6),
0 G

(3.7) 2 exp [1QR;] = N%: Q6 =

where & is a reciprocal-lattice vector and dg¢ indicates the Kroneker symbol,
while &(@ — @) is the Dirac delta-function. As is well known, the reciprocal-lat-
tice vectors have the following property:

(3.8) G-R, = 2= (integer)
and are given by
(3.9) G = hb] - kbz =+ lb;] ’

where b, , b, and b3 define the unitary traslation in the reciprocal lattice. Equa-
tion (3.7) is a form of the well-known Bragg law. As a consequence of egs. (3.5)
and (3.7) we can state that the elastic eross-section contains two terms: the first
one accounts for the Bragg scattering and is nonzero only for selected values of
the momentum transfer, while the second is in general relatively structureless
and hence much more isotropic. It is important to note that the differential
cross-section of Bragg scattering is of the order of N*, while the diffuse term is
of the order of N, as is seen in eq. (3.5) considering that (4,,4,. ) is a rapidly de-
caying function of [. Therefore, the Bragg scattering is due to the coherence be-
tween the waves scattered by two nuclei, in such a way that, when the Bragg
law is verified, all the waves interfere constructively with each other, thus giv-
ing rise to a very high cross-section. The diffuse term, on the contrary, is con-
nected to the almost incoherent scattering due to the scattering amplitude flue-
tuations 4,,. Therefore, the incoherent scattering, if accurately determined, can
allow the study of the local environment in partially disordered systems, e.g.
random alloys and hydrogen-bonded compounds.

When we consider the scattering in systems where no periodic arrangement
of the nuclei is present, the situation changes, because the constructive inter-
ference between the waves scattered by two different nuclei cannot take place
in general. When this is the case and if the system contains more than one ele-
ment, it is useful to write the scattering amplitude at the [-th site in the
form

(3.10) b=b,+4,,

where b, is the average scattering amplitude of the «-th element, which has
been assumed to occupy the [-th site. The fluctuation 4, aceounts for the change
of b, from site to site due to various effects as nuclear spin and isotope distribu-
tion. Therefore, the cross-section can be written as follows:

de, _ 2. b.bs 2 (exp QR exp[—iQR, Dior 9 +

(3.11) a0

L ;(Jldg»expli()ﬂ,lexp[—?'QR;: 1y,



where (...}, indicates that the average has to be taken over all the system
configurations that contain an atom « at the site [ and an atom 2 at the site .
Due to its nature the second term in eq. (3.11) is purely incoherent and it is
nonzero only when [ =1', so that its contribution is isotropie. The first term in
eq. (3.11) contains the partially constructive interference connected to the local
correlations between different atoms. Then eq. (3.11) is usually written in the
form

do

(3.12) 0

= 2 b.b; S, (@ +N(aE),
where S,;(Q) is called partial structure factor. The determination of S,.(Q) is
particularly useful because its Fourier transform is given by

(3.13) G,(n) = 2] z Jexp (1Qr] S, (@) dQ = ;(O‘(T—Rz* +R)) i -

T

Therefore, (,,(r) contains the distribution of the relative distances between
atoms « and 3. Looking at eq. (3.12) it is evident that an actual experiment pro-
vides do/d(2, so that only properly weighted combinations of the various S,.(Q)
can be obtained. In general even this combination can be useful, but often one
can take great advantage from a combined neutron and X-ray diffraction
experiment.

The main difference between neutron and X-ray scattering is due to the fact
that the neutron scattering amplitudes should be replaced by the X-ray scatter-
ing factors which are dependent on the momentum transfer and have a smooth
dependence on the atomic number. Therefore, for instance, an X-ray scattering
experiment is of little help in studying order-disorder transitions in systems
containing elements of similar atomic numbers, while this is not the case in neu-
tron scattering.

4. - Introduction to inelastic scattering.

4'1. Generalities. — In deriving eq. (1.9a) we neglected all inelastic-scatter-
ing contributions, by assuming fixed nuclei. However, even in the case of the
heaviest elements at very low temperature the nuclei cannot be considered as
fixed. Furthermore the typical vibrational frequency v can be as high as 10 Hz,
so that the corresponding quantized energy is Av=40 meV. Because the en-
ergy of a neutron having a wavelength of 1 A is about 81 meV (see table I), we
see that the vibrational frequency of the nuclei in a system is nonnegligible with
respect to the neutron energy.

Therefore, to derive the cross-section as defined in eq. (1.10a) we have to



consider the Fourier transform of the time-dependent wave amplitude,
that is:

4.1) ) = [ expl—iwtl () dt,

where the time-dependent amplitude is the generalization of that given in eq.
(1.2) taking into account the time dependence of the nuclear position:

(4.2) Ut) = j exp [iK,- 1] exp [—iK - rlex [r — Ry ()] dr.

Because in eq. (1.7) the particle flux is proportional to the square modulus of the
amplitude, we have that the energy-dependent flux (through the relationship
ho=FE) is given by

4.3) 4() = B [ exp[~iut)(exp [iQR, (0)] exp [—iQR, (B]) dt,

where the average has to be taken over all possible vibrations. Actually a de-
tailed calculation of this average implies a quantum-mechanical treatment of
the nuclear vibrations, but many results can be obtained avoiding such an ap-
proach. The generalization of eq. (4.3) to the case of many moving nuclei is easi-
ly obtained, so that the following form for the cross-section is derived, accord-
ing to eq. (1.10a):

d%s _ 1

W) dods  2x

; b, bng'exp[—imtJ(exp [i{QR; (0)] exp [—iQR, (t)]) dt .

Using this equation we shall derive the cross-section appropriate to some sim-
ple case, namely the elastic Bragg scattering in the case of the moving nuclei
and the inelastic scattering from a high-frequency sound wave (phonon).

4°2. Bragg scattering and Debye-Waller factor. — To derive the purely elas-
tic scattering in a crystal using eq. (4.4), we observe that in this case there
exists a set of equilibrium positions R {* of the nuclei, while the time-dependent
positions can be obtained adding a time-dependent (small) fluctuation u, (). The
fluctuation u;(f) is not a completely random function of the site and of the time,
however u;(0) and u; (f) become uncorrelated when ¢t becomes larger and larger.
Therefore, we have

(4.5) i (exp [iQR,(0)] exp[~iQR: (]) = (exp[iQR, 1) (exp[—iQR, ).

To evaluate the average of the exponentials appearing in the right-hand side of
eq. (4.5), we observe that it is reasonable to assume a Gaussian distribution for



each Cartesian component of the fluctuations u;, then we have

3
4.6)  {(exp[iQR + u)]) = exp[iQR{]] | f duy, -
a=1

P_(u,) exp[iQ,u;,] = exp[1QR V]exp[—W,],

where the Debye-Waller factor exp[—W,] is given by

3
4.7) exp[—W,;] = lzlleXp[—Qf (uf ) 1.

In eqgs. (4.6) and (4.7) the index « runs over the three Cartesian coordinates x, %
and z. In view of eq. (4.5) it is useful to split the integrand of eq. (4.4) in the fol-
lowing way:

4.8)  {(exp[iQR;(0)]exp[—iQR; (H)]) =
=Fy () +exp[iQR{” - R)]exp[-W,— W],

where F;. (f) contributes to the purely inelastic scattering only, while, using the
second term, eq. (3.5) is regained by properly inserting the Debye-Waller fac-
tor. We have

s _ 1 J’ w
f) =g %} exp [ —iwt] Fyy () dt +

+a(m){ NS b expl-W.lexpliQr S coa|*+

+N 2 Efxzﬂ@s(_m. ) exp [iQ(ry — ry)]exp[—-W, — W, lexp [iQR;]! .

Because exp[— W] is a decreasing function of the momentum transfer, its pres-
ence produces only a decrease of the intensity of the elastic-scattering contribu-
tion at high momentum transfer.

4'3. Inelastic phonon scattering. — In an ideal harmonic crystal there exist
3N sinusoidal waves (phonons) such that the nuclear (small) fluctuations from
the equilibrium positions are given by

(4.10) u; (t) = e,iexp [igR [V exp [iwg; t],

where ¢ and w,;/ 2= are the wave vector and the frequency of the wave, e,; is the



polarization vector and j is a branch index. Equation (4.4) can be written as
follows:

d’s
dQ de

(4.11) ( ) - 2%;bgb;aexp[iQ(thn_R,_‘?J)J-

. j exp [ —iwt]{exp [iQu, (0)]lexp [—1Qu; (t)]) di.

Then, assuming wu(t) small enough, we can develop the exponentials in the
right-hand side of eq. (4.11) to the lowest nonvanishing (the second) order, so
that the cross-section becomes

i

d*s 1 :
(4.12) ( A0 dz ){n =5 ; bi by exp lIQR{” — R(™)]-

: JGXp[—ic-)t]([Q‘us 0)][Q-u; (H)]) dt,

where the subscript in means that only inelastic-scattering contributions have
been retained. Substituting eq. (4.10) we get
( d*s

4.13
( ) L d2de

)' = N2 bg rQ'ef”- ‘2 E{} O\Q+G!q 6((11 - wqj) ’
mn

where we assumed for simplicity that all the nuclei in the crystal have the same
scattering amplitude b. Looking at eq. (4.13) we see that it is possible to mea-
sure simultaneously the wave vector g, the frequency w,;/2x and the polariza-
tion vector e,;, by performing an inelastic-neutron-scattering experiment. It
should be mentioned that the classical approach we employed resulted in a par-
tially incorrect cross-section, because to derive eq. (4.13) we have tacitly as-
sumed that one wave only is present. Actually this is not the case because many
waves are thermally excited. Moreover, we have not used a condition necessary
to have real fluctuations u,(f). Nevertheless eq. (4.13) contains the most rele-
vant physics. The correct form of the inelastic phonon cross-section as obtained
from a full calculation is

2
el (d?‘egs )in =N % ﬁ % Q-ey;l* w%” -
[n(erg;) (e + ;) 8g1q.6 + (Mlwy;) + Do — wyi) dg g6],
where
b -1
(4.15) (w) = expl KBT} - 1] ,

Ky being the Boltzmann constant and 7' the absolute temperature.






